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Abstract

A finite element model for the static and dynamic analysis of a piezoelectric bimorph is proposed. It combines a 2D

single-layer representation model (finite 2D isoparametric elements) for the mechanical displacement field with a

layerwise-like approximation (finite sublayers) for the electric potential field to achieve the accurate prediction of both

the mechanical displacement and electric potential fields. Linear through-the-thickness electric potential distribution is

assumed only for each piezoelectric sublayer and the actual nonlinear distribution can be reached by using a fine

thickness discretization. The unknown induced electric potentials are not included in the global governing equations of

motion due to the introduction of an elementary condensation scheme based on the electric boundary conditions and

thus the present model will not suffer from an excessive number of potential field variables. A PVDF bimorph beam and

a PZT bimorph plate are used to verify the present model. Numerical examples show that the present model can well

predict both the global and local responses such as mechanical displacements, modal frequencies as well as the through-

the-thickness electric potentials, all in good agreement with those from full 3D finite element model or 3D elasticity

theory solution. Furthermore, the conventional piezoelectric finite element models assuming a linear through-the-

thickness electric potential field, which is a special case of the present electric potential representation, has been

identified as suitable for the global response analysis of thin or moderately thick bimorph plates. The performance of

2D plane models has been evaluated as less accurate in predicting the static and dynamic responses if transversally

isotropic piezoelectric materials are involved. The present study may help establish more accurate and efficient piezo-

electric models based on better understanding to the piezoelectricity.
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1. Introduction

Piezoelectric materials have been widely used in many applications. The piezoelectric unimorph and

bimorph, which can produce flexural deformation significantly larger than the length or thickness defor-
mation of the individual piezoelectric layers, have been used as electroacoustic transducers, medical devices,

microrobot, and atomic force microscope cantilevers due to the characteristics of miniaturization, high

positioning accuracy, sensitive response, and large displacement (Ha and Kim, 2002).

The research area of smart/intelligent materials and structures has experienced tremendous growth for

decades (Wang, 2002). The promising potential of smart composite structures bonded or embedded with

piezoelectric sensors/actuators has triggered intense research interests due to numerous technological

applications (Fernandes and Pouget, 2003). The analysis of piezoelectric composite structures such as

piezoelectric laminated plates and beams requires efficient and accurate electromechanical modelling of
both the mechanical and electric responses such as mechanical displacements and electric potentials. The

accurate response of these structures can be obtained by solving the three dimensional (3D) coupled field

equations with exact satisfaction of the mechanical and electric boundary conditions and interlaminar

continuity conditions (Kapuria, 2001). Exact 3D analytical solutions have been presented for the piezo-

electric response of simply supported flat panels and rectangular plates (Ray et al., 1993; Tzou and Tiersten,

1994; Bisegna and Maceri, 1996; Ray et al., 1998). Since the exact 3D analytical solutions are available only

for some regular shapes with specified simple boundary conditions, in order that the numerical solution to

more general piezoelectric composite structures is possible, the introduction of the finite element method
(FEM) is desirable. Finite element (FE) models based on Hamilton’s variational principle for piezoelectric

composite beams and plates have been reported (Tzou and Tseng, 1990; Hwang and Park, 1993; Lam et al.,

1997; Saravanos et al., 1997; Wang et al., 2001; Yao and Lu, 2003). A detailed bibliographical review of the

finite element methods applied to the analysis and simulation of smart piezoelectric materials and structures

can be found in (Mackerle, 2003). In modelling the mechanical displacement field, the full 3D FE model

(Tzou and Tseng, 1990; Yao and Lu, 2003) typically results in large problem size and high computational

cost. Several 2D models (1D for beams) with different assumptions made on the through-the-thickness

mechanical displacement field distribution are available in the literature (Kapuria, 2001; Fernandes and
Pouget, 2003). The equivalent single layer approximations and the layerwise approximations have their

own advantages and disadvantages in terms of accuracy, speed of convergence and computational cost and

it appears that the single layer approximation based on the first-order shear theory (FOST) can provide a

good compromise of solution accuracy, economy, and simplicity (Reddy, 1997).

Furthermore, the through-the-thickness electric potential field distribution can be approximated by

various models in the open literature. Mindlin (1952) first made the hypothesis that the electric potential

functions have only a constant electric potential across the thickness of the piezoelectric layers. It implies

that the electric field along the thickness direction vanish (Bisegna and Caruso, 2001). However, since the
thickness direction is usually the poling direction in which the external voltage can be applied, this sim-

plification may cause significant errors. Mindlin (1972) further developed the piezoelectric plate model by

assuming that the transversal electric field is constant in the thickness. Hence, the electric potential func-

tions will have a linear variation across the thickness of the piezoelectric layers. This linear transversal

electric potential model has been widely adopted (Lee, 1990; Hanagud et al., 1992; Hwang and Park, 1993;

Ray et al., 1994; Samanta et al., 1996; Lam et al., 1997; Yang, 1997; Aldraihem and Wetherhold, 1997; Lam

and Ng, 1999; Auricchio et al., 2001; Wang et al., 2001; Wang, 2002; Zhu et al., 2002; Kapuria et al., 2003;

Wang et al., 2004). As pointed out by Auricchio et al. (2001), this model supplies the exact mean value of
the electric potential and may thus be sufficient for most of practical applications. However, as noticed by

Yang (1999), this approximation on the electric potential field may be good only for the case of thin

actuators. For the piezoelectric closed-circuit sensor, the electric potential in the sensor is neglected by this

model and thus the local response of the electric potential field cannot be predicted correctly. After carrying
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out a 3D analysis, Bisegna and Maceri (1996) pointed out that the electric potential distribution along the

thickness of a piezoelectric layer has a quadratic component and this higher-order electric behavior should

be addressed in the piezoelectric plate theories. Yang (1999) showed that this quadratic electric potential

variation is directly coupled to the flexure of the actuators and its effect is of the same order as the bending
stiffness of the actuators. Although negligible for thin actuators, this effect should be included for thick

actuators. It should be noted that in this model the transversal electric field may be linear (Bisegna and

Caruso, 2001) or nonlinear in the thickness, depending on whether the higher-order terms is included in the

adopted plate theory due to the electromechanical coupling. This quadratic electric potential model has

been adopted by a few researchers (Yang, 1999; Gopinathan et al., 2000; Wang and Quek, 2002; Yao and

Lu, 2003). Fernandes and Pouget (2003)) further developed this model by adding a half-cosine distribution

term to account for the shearing effect. It should also be mentioned that the electric potential functions were

initially assumed to have a sinusoidal component by some researchers (Ray et al., 1993, 1998; Lee and Lin,
1998) for the convenience of their trigonometric expansions. To take into account the complex mechanical

and electric behavior of the piezoelectric laminate more appropriately, the use of the layerwise theory

(Saravanos et al., 1997) or multi-layer modelizations (Bisegna and Caruso, 2001) has been recommended,

though it may suffer from an excessive number of field variables in proportion to the number of physical

layers or number of distributed sensors and/or actuators. Kapuria (2001) even proposed an electrome-

chanical model that combines the displacement field approximations of the third-order zigzag theory with a

layerwise approximation for the electric potential. Furthermore, higher order electrical potential model (up

to terms of cubic variation along the actuator thickness) has been proposed by Tiersten (1993) and it is
showed that for a very thin plate, the quadratic and cubic terms in the expansion can be ignored. More

recently, Bisegna and Caruso (2001) proposed a biquadratic model for the electric potential distribution

along the thickness and concluded that in order to obtain accurate estimates of the stress and electric-

displacement fields, it is necessary to take into account higher-order terms of up to the fourth-order in the

through-the-thickness electric potential representation.

It appears that each electric potential representation model has its own advantages and disadvantages in

terms of accuracy and ease of use and computational cost. None of them is generally the best. Bisegna and

Caruso (2001) has made a critical comparison to evaluate the higher-order piezoelectric plate theories and it
was found that the Lo–Christensen–Wu-type model with biquadratic potential (LCW/B) is able to correctly

estimate the leading order terms of the unknowns fields for all the loading conditions considered, which

implies that all the existing analytical or FE models may only provide an approximate solutions to the

unknown fields and higher-order models can achieve better results. However, further developments on the

prescribed higher-order potential models would become less practical due to the much higher computa-

tional cost involved. On the other hand, it has been well accepted that the finite element method is a

powerful numerical approximate method for the solution of differential and integral equations (Reddy,

1997). Usually, the FEM can guarantee the convergence to the exact solution and better results can be
obtained by using a finer mesh. However, in most of the existing FE models for the piezoelectric laminated

plates, the mechanical displacement and electric potential fields are discretized in the 2D midplane only,

while the through-the-thickness electric potential is assumed to be linear and thus no discretization is

introduced in the thickness (Hwang and Park, 1993; Samanta et al., 1996; Lam et al., 1997; Aldraihem and

Wetherhold, 1997; Lam and Ng, 1999; Wang et al., 1999; Auricchio et al., 2001; Wang et al., 2001; Wang,

2002; Zhu et al., 2002; Wang et al., 2004, 2003). Hence, it is evident that there is an inconsistency in the

FEM. Since the electric field can affect the mechanical response significantly through the electromechanical

coupling, there is no guarantee that both the mechanical displacement and electric potential fields converge
to the exact solution with the use of finer meshes and the numerical results may depend on the assumed

through-the-thickness distribution of the electric potential heavily.

The objective of the present study is to establish an efficient FE model to overcome the drawback of the

inconsistent FEM methodology. Both the unknown mechanical displacement and electric potential fields
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are discretized. In addition to the 2D discretization of the mechanical displacement field in the midplane,

the electric potential field of each piezoelectric sensor and/or actuator layer is further discretized by finite

sublayers. This FE model combines a 2D single-layer representation model for the mechanical displacement

field with a 3D layerwise-like approximation for the electric potential field and is capable of predicting both
the global and local responses of a thin or moderately thick piezoelectric bimorph accurately.
2. Formulation of the piezoelectric finite element modelling

Fig. 1 shows the geometry of a piezoelectric bimorph. The bimorph structure undergoing the action of

the external mechanical and electric forces (a uniformly distributed surface load Ps and an applied electric

voltage of V0) is assumed to be perfectly bonded, elastic and orthotropic in behavior (Kekana, 2002) with
small strains and displacements (Wang et al., 2004). The deformation of the bimorph is assumed to take

place under isothermal conditions. Moreover, the piezoelectric sensors/actuators are made of homogenous

and isotropic dielectric materials (Cheng, 1989) and high electric fields and cyclic fields are not involved

(Ehlers and Weisshaar, 1990). Based on these assumptions, a linear constitutive relationship (Wang, 2002)

is employed for the static and dynamic analysis of the piezoelectric bimorph.

2.1. Linear piezoelectric constitutive equations

The linear piezoelectric constitutive equations (LPCE) in Voigt notation can be expressed as
r ¼ ce� eTE; ð1Þ

D ¼ eeþ gE; ð2Þ
( , )y
u β–

( , )xv β

(a) Coordinate denotation
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Fig. 1. Geometry of a piezoelectric bimorph.
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where r is the stress vector; c the elasticity matrix; e the strain vector; e the piezoelectric constant matrix; E

the electric field vector; D the electric displacement vector; and g the dielectric constant matrix. Eqs. (1) and

(2) represent the converse and direct piezoelectric effects (Tzou and Tseng, 1990), respectively.

Furthermore, the magnetically static electric field vector E in the LPCE is related to the electric potential
field / by using a gradient vector 5 (Tzou and Tseng, 1990) as
E ¼ �5 /: ð3Þ
2.2. Variational form of the governing equations of motion

The governing equations of motion of the piezoelectric bimorph plate can be derived by using Hamil-

ton’s variational principle (Hwang and Park, 1993), which can be written as
d
Z t2

t1

ðT � U þ W Þ dt ¼ 0; ð4Þ
where t1 and t2 are the starting and finish time, respectively; T the total kinetic energy; U the total potential

energy; and W the total work done by the external mechanical and electrical forces. The total kinetic energy

T for the volume X of the bimorph plate is given (Wang, 2002) as
T ¼ 1

2

Z
X

_uTq _udX; ð5Þ
where _u is the velocity field vector and q the mass density. The total potential energy U , including the
mechanical strain and electrical potential energies, is given (Tzou and Tseng, 1990) as
U ¼ 1

2

Z
X
ðrTe� ETDÞdX: ð6Þ
The total work W done by the external mechanical and electrical forces is given (Tzou, 1993) as
W ¼
Z
X
uTPb dXþ

Z
Cs

uTPs dCs þ
X
i

uTi Pi �
Z
C/

/q0 dC/; ð7Þ
where u is the displacement field vector, Pb, Ps and Pi the body, surface and ith concentrated load vectors,

respectively; q0 the surface charge density; Cs the external mechanical loading surface; and C/ the external

electrical loading surface. Substituting Eqs. (5)–(7) and (1)–(3) into Eq. (4) and applying the condition that

all variations must vanish at the times t ¼ t1 and t ¼ t2 will yield the governing equations of motion in

variational form as follows:
Z
X
ðduTq€uþ ðLduÞTCLuþ ðLduÞTeT 5 /þ ð5d/ÞTeLu� ð5d/ÞTg5 /� duTPbÞdX

�
Z
Cs

duTPsdCs �
X
i

duTi Pi þ
Z
C/

q0d/dC/ ¼ 0; ð8Þ
in which the strain vector e is represented as e ¼ Lu, where L represents a matrix of differential operator

(Kekana, 2002).

In the above variational form of governing equations of motion Eq. (8), the mechanical displacement

field u and electric potential field / are the unknown functions. To solve these unknowns numerically, an
efficient FE model will be established in the present study by adopting the approximations on the through-

the-thickness mechanical displacement and electric potential fields, as next discussed.
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2.3. Approximations on the mechanical displacements

In the present single-layer representation for the mechanical displacements, the plate theory FOST is

adopted. The mechanical displacements of a bimorph plate based on the FOST takes the following form
(Wang et al., 2001):
uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zbxðx; y; tÞ;
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zbyðx; y; tÞ;
wðx; y; z; tÞ ¼ w0ðx; y; tÞ;

ð9Þ
where u0; v0;w0 are the components of the displacement vector uðx; y; 0Þ of a reference point ðx; y; 0Þ at the
midplane ðz ¼ 0Þ along the x; y; z axes, respectively; u; v;w the components of the displacement vector

uðx; y; zÞ of any point ðx; y; zÞ in the plate along the x; y; z axes, respectively; and bx; by the slopes of the

normal to the reference point ðx; y; 0Þ on the midplane in the yz; xz planes, respectively, as depicted in Fig.

1(a). It should be noted that the rotations bx and by are different from the right-hand-rule rotations and may

greatly simplify the algebra involved (Hughes, 1987). Eq. (9) can also be expressed in matrix form as
u ¼ bZu0; ð10Þ
where
bZ ¼
1 0 0 z 0

0 1 0 0 z
0 0 1 0 0

2
4

3
5; ð11Þ
u0 ¼ u0 v0 w0 bx by

� �T
: ð12Þ
Based on the FOST, the relationship between the strains at any point along the thickness direction and

those at the mid-surface can be written as follows:
eiðx; y; z; tÞ ¼ e0i ðx; y; tÞ þ zj0
i ði ¼ 1; 2; 6Þ;

e3ðx; y; z; tÞ ¼ 0;

eiðx; y; z; tÞ ¼ e0i ðx; y; tÞ ði ¼ 4; 5Þ;
ð13Þ
where ei is linear strains for small deformations of any point in the plate, and e0i , j
0
i the corresponding

strains and curvatures of the plate at the midplane, respectively, which can be written (Saravanos et al.,

1997) as
e01 ¼
ou0
ox

; e02 ¼
ov0
oy

; e03 ¼ 0;

e04 ¼ by þ
ow0

oy
; e05 ¼ bx þ

ow0

ox
; e06 ¼

ou0
oy

þ ov0
ox

;

j0
1 ¼ bx;x; j0

2 ¼ by;y ; j0
6 ¼ bx;y þ by;x:

ð14Þ
According to Eqs. (10), (13) and (14), the mechanical displacements and strains at any point in the bimorph

3D space can be obtained from the displacement vector in the 2D midplane. This reduction of a 3D

problem into a 2D problem can greatly simplify the computational analysis. In this study, the quadratic

eight-noded isoparametric element in (Wang et al., 2001; Wang, 2002) is adopted to discretize the 2D
midplane and thus for an element, the continuous mechanical displacement vector u0 can be approximated

by using the finite element shape functions as
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u0 ¼ Nu~u
e; ð15Þ
where Nu is the matrix of displacement shape functions, ~ue the discrete element nodal displacement vector

(Wang, 2002).

Hence, the corresponding mechanical displacements and strains of any point in the 3D plate space can be
obtained as
u ¼ bZNu~u
e; ð16Þ
e ¼ Lu ¼ ZBu~u
e ð17Þ
in which the thickness coordinate matrix Z and the strain–displacement matrix Bu are defined in (Wang

et al., 2001; Wang, 2002).
2.4. Approximations on the electric potentials

In the present study, approximations on the electric potential field of each piezoelectric layer are made by

further discretization of each piezoelectric layer into finite sublayers along the thickness direction and

assuming a linear through-the-thickness electric potential distribution for each piezoelectric sublayer. It can

be expected that the actual electric potential field of each piezoelectric sensor and/or actuator layer can be

approached with more sublayers for the layer and thus the convergence of both the mechanical displace-
ment and electric potential fields to a better solution can be ensured. Hence, this piezoelectric FE model,

which combines a 2D FOST model (equivalent single-layer representation (Fernandes and Pouget, 2003))

for the mechanical displacement field with a layerwise-like approximation for the electric potential field,

would be able to achieve the convergence of both the unknown mechanical displacement and electric

potential fields. Furthermore, any higher-order hypothesis on the actual through-the-thickness electric

potential field of each piezoelectric sensor and/or actuator layer is not needed.

Fig. 2 shows that each layer of the piezoelectric bimorph is discretized by nsub sublayers in the thickness

to model the actual through-the-thickness distribution of the electric potential. It is assumed that each
sublayer has a linear electric potential function /iðzÞ; ði ¼ 1; 2; . . . ; 2nsubÞ across the thickness as
/iðzÞ ¼ Ni
/
~/i ð18Þ
in which Ni
/ is the shape function of the electric potential function and ~/i the electric potentials at the top

and bottom surfaces of the sublayer, which can be expressed as
x

z

o

1

nsub

nsub+1

2nsub

2

z0

z1

z2

0φ
1φ
2φ:

Fig. 2. Finite sublayers of a piezoelectric bimorph.
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Ni
/ ¼ 1

hi
zi � z z� zi�1½ �; hi ¼ zi � zi�1; zi�1 6 z6 zi; ð19Þ

~/i ¼ /i�1

/i

� �
: ð20Þ
Hence, the conventional linear through-the-thickness electric potential model is only a special case of the
present model, nsub ¼ 1, and therefore comparative study can be easily carried out. The same global 2D

mesh for the midplane is also used to discretize each piezoelectric sublayer in the xy plane to keep the

compatibility. For each piezoelectric sublayer element, it is assumed that the electric potentials at the same

height along the thickness are the same, as recommended in (Hwang and Park, 1993; Wang et al., 2001).

Since in practice the surfaces of piezoelectric sensors and actuators are usually electroplated (Lee, 1987,

1990), the variation of the electric potential in the xy plane is insignificant and more importantly, the error

caused by this approximation can be reduced by using a fine mesh, as demonstrated by Hwang and Park

(1993). Hence, for each discretized sublayer element, the electric field E in Eq. (3) can be re-written as
Ei ¼ Bi
/
~/i; ð21Þ
where
Bi
/ ¼ 1

hi

0 0

0 0

1 �1

2
4

3
5: ð22Þ
2.5. Elementary governing equations of motion

The elementary governing equations of motion can be derived by substituting Eqs. (16)–(18) and (21)

into Eq. (8) and assembling the electric potentials along the thickness, which can be written as follows:
Me€~ue þ Ke
uu~u

e � Ke
u/
~/e ¼ fe; ð23Þ

Ke
/u~u

e þ Ke
//

~/e ¼ qe; ð24Þ
where Me is the elementary mass matrix; Ke
uu mechanical stiffness matrix; Ke

u/ and Ke
/u the piezoelectric

coupling matrices; Ke
// the dielectric primitivity matrix; ~/e the discrete elementary electric voltage vector; fe

the nodal external force vector; and qe the nodal externally applied charge vector.
Me ¼
Z
Xe

NT
u
bZTqbZNu dX; ð25Þ

Ke
uu ¼

Z
Xe

BT
uZ

TcZBu dX; ð26Þ

Ki
u/ ¼ �

Z
Xi

BT
uZ

TeTBi
/ dX ¼ �hi

Z
Ci

BT
uZ

T
i e

TBi
/ dC; ð27Þ

Ki
/u ¼ ðKi

u/Þ
T
; ð28Þ

Ke
/u ¼

X
i

Ki
/u ¼ ðKe

u/Þ
T
; ð29Þ
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Ki
// ¼

Z
Xi

ðBi
/Þ

T
gBi

/ dX ¼ 1

hi

Z
Ci

g33
1 �1

�1 1

� �
dC; ð30Þ
Ke
// ¼

X
i

Ki
//; ð31Þ
~/e ¼ /0 /1 . . . /2nsub
� �T

; ð32Þ
fe ¼
Z
Xe

NT
u
bZTPbdXþ

Z
Ce
s

NT
uPsdCs þ

X
i

NT
uiP

e
i ; ð33Þ
qe ¼
X
i

Z
Ci
/

ðNi
/Þ

T
q0dC/; ð34Þ
where Xi is the ith piezoelectric sublayer domain, Ci the mid-surface of the sublayer, and Zi the coordinate

matrix at Ci.
2.6. Static condensation by matrix algebra

Two sets of governing equations of motion corresponding to the external mechanical forces and electric

charges have been derived, as shown in Eqs. (23) and (24). It should be noted that the charge equation Eq.

(24), which implies that the total of the electric flux out of the surfaces of an element is equal to the electric

charge enclosed, is equivalent to the Gauss’s law (Wang, 2002), or Maxwell’s first equation. After the global

matrices are assembled, the vectors of unknown displacements and potentials would be directly solved for.

However, for the piezoelectric materials, typical element values of Ke
uu are of the order 108, while typical

element values of Ke
// are of the order 10�11. This huge difference in magnitudes would make the global

matrices too ill conditioned if the two governing equations of motion are taken as a whole. To overcome
this problem, the general method of static condensation by matrix algebra can be adopted. In the present

study, the unknown potentials are sacrificed in favor of the unknown displacements. The governing

equations of motions Eqs. (23) and (24) are finally condensed as
Me€~ue þ ðKe
uu þ Ke

pÞ~ue ¼ fe þ fea; ð35Þ
where Ke
p is the induced mechanical stiffness matrix due to the electromechanical coupling of the piezo-

electric materials, fea the equivalent (induced) mechanical forces of the applied voltages of piezoelectric

actuators, which can be given as
fea ¼
X
k

fka; ð36Þ
where fka is the equivalent force vector of the kth actuator, which will be discussed later.

It should be highlighted that the calculation of the induced mechanical stiffness matrix Ke
p is generally

complicated since the elementary dielectric primitivity matrix Ke
// in Eq. (24) is not positive definite. To

make this static condensation possible, electric boundary conditions must be applied such that the reduced

elementary dielectric primitivity matrix will be positive definite and the unknown potentials can be solved in

terms of the elementary displacements from Eq. (24). Since the piezoelectric materials can be used as
sensors either in closed circuit or in open circuit and/or actuators, three different electric boundary con-

ditions have to be considered. Hence, Ke
p can be given as



4084 S.Y. Wang / International Journal of Solids and Structures 41 (2004) 4075–4096
Ke
p ¼

X
i

Ki
c þ

X
j

Kj
o þ

X
k

Kk
a; ð37Þ
where Ki
c, K

j
o and Kk

a are the corresponding induced stiffness of the piezoelectric sensor in closed circuit, the

sensor in open circuit and the piezoelectric actuator, respectively, which will be given as follows.

2.6.1. Case I: Piezoelectric sensor in closed circuit

For the kth piezoelectric closed circuit sensor, since the electric potentials at the top and bottom surfaces

of the sensor layer are zero (grounded) (Lee, 1990), the electric potential vector becomes
~/k ¼ 0 ~/k

c 0
� �T

, where ~/k
c is the induced sensor potential vector. Furthermore, since it is assumed that

there is no free charge inside the piezoelectric materials, after the standard FEM assemblage of the charge

equation of each sublayer of the sensor layer, the electric charges at the top and bottom surfaces of the finite

sublayers inside the sensor layer must vanish, except at the top and bottom surfaces of the sensor layer.

According to Eq. (24), the corresponding charge equation for the kth sensor can be written as
Kk
/u~u

e þ Kk
//

0
~/k
c

0

8<
:

9=
; ¼

qk0
0

qknsub

8<
:

9=
;; ð38Þ
where ~/k
c can be obtained by solving Eq. (38) as
~/k
c ¼ �ðKc

//Þ
�1
Kc

/u~u
e ð39Þ
in which Kc
// and Kc

/u are the corresponding submatrices of Kk
// and Kk

/u, respectively. Since the induced

electric potentials can be expressed by the elementary nodal displacements ~ue, the governing equations in

Eqs. (23) and (24) can be reduced in terms of ~ue only. According to Eqs. (23) and (24), the electrically
induced stiffness of the piezoelectric closed-circuit sensor Kk

c can be written as
Kk
c ¼ �Kk

u/
~/k ¼ ðKc

/uÞ
TðKc

//Þ
�1
Kc

/u: ð40Þ
It should be noted that different from most of the finite element models (Hwang and Park, 1993; Ray et al.,

1994; Samanta et al., 1996; Lam et al., 1997; Aldraihem and Wetherhold, 1997; Wang et al., 2001; Wang,
2002; Zhu et al., 2002) and some of the analytical models (Lee, 1987, 1990; Hanagud et al., 1992; Yang,

1997; Lam and Ng, 1999; Auricchio et al., 2001), the induced sensor potentials do not vanish in the present

FEM model and thus the induced stiffness Kk
c due to the electromechanical coupling can be taken into

account accurately.

2.6.2. Case II: Piezoelectric sensor in open circuit

For the kth piezoelectric open circuit sensor, the electric potential at the bottom surface of the sensor

layer can be assumed as zero (grounded) and thus the electric potential vector becomes ~/k ¼ 0 ~/k
o

� �T
,

where ~/k
o is the induced open-circuit sensor potential vector. Similarly, the corresponding charge equation

for the open circuit sensor can be derived as
Kk
/u~u

e þ Kk
//

0
~/k
o

� �
¼ qk0

0

� �
; ð41Þ
where ~/k
o can be obtained by solving Eq. (41) as given by
~/k
o ¼ �ðKo

//Þ
�1
Ko

/u~u
e ð42Þ
in which Ko
// and Ko

/u are the corresponding submatrices of Kk
// and Kk

/u, respectively. Hence, the induced

stiffness of the piezoelectric open-circuit sensor Kk
o can be written as
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Kk
o ¼ �Kk

u/
~/k ¼ ðKo

/uÞ
TðKo

//Þ
�1
Ko

/u: ð43Þ
Comparing Eqs. (42) with (39) and Eqs. (43) with (40), it appears that induced electric potential and

stiffness of the piezoelectric sensor in open circuit are similar to those in closed circuit. However, after

comparing Eqs. (41) with (38), it can be found that the magnitude of ~/k
o and Kk

o will be significantly larger

than that of ~/k
c and Kk

c , since the constraints on the induced electric potential for the sensor in closed circuit

is much more severe than in open circuit.

2.6.3. Case III: Piezoelectric actuator

For the kth piezoelectric actuator with an applied voltage of V k, it can be assumed that the electric

potential is zero (grounded) at the bottom surface of the actuator layer and V k at the top surface. Hence,

the electric potential vector becomes ~/k ¼ 0 ~/k
a V k

� �T
, where ~/k

a is the induced actuator potential

vector. The corresponding charge equation for the piezoelectric actuator can be derived as
Kk
/u~u

e þ Kk
//

0
~/k
a

V k

8<
:

9=
; ¼

qk0
0

qknsub

8<
:

9=
; ð44Þ
Hence, ~/k
a can be obtained as
~/k
a ¼ �ðKa

//Þ
�1
Ka

/u~u
e � ðKa

//Þ
�1
Ka

//;1V
k ð45Þ
in which Ka
// and Ka

/u are the corresponding submatrices of Kk
// and Kk

/u, respectively, and Ka
//;1 is the first

column of the corresponding submatrices of Kk
//. Comparing Eq. (45) with Eq. (39), it can be found that

the first term of the right side of Eq. (45) is similar to the nonlinear induced potentials of a closed-circuit

sensor, with the same constraints on the potentials at the top and bottom surfaces. Furthermore, the second

term is independent of the unknown displacement field. It should be noted that, without the electrome-
chanical coupling, the applied voltage V k would lead to a linear through-the-thickness distribution of the

electric potentials. Therefore, the actual through-the-thickness distribution of the electric potentials is the

summation of the linear distribution induced by the applied voltage directly and the nonlinear distribution

induced by the electromechanical coupling. Since the latter is secondary compared with the former, in most

cases the actual through-the-thickness distribution of the electric potentials of the piezoelectric actuators

may be approximated as linear, especially for thin or moderately thick plates. Closed-form solutions of

Fernandes and Pouget (2003) for a thick plate with an aspect ratio of 5 also suggest that through the

thickness, the electric potential function would be linear and the electric field constant. Similar observation
can also be found in Gopinathan et al. (2000), in which it is shown that the constant electric field model for

the piezoelectric actuators predicts results similar to the 3D elastic solution. According to the present FE

model, those solutions can be reasonable since the nonlinear potential response may usually be insignifi-

cant. Hence, though less accurate for the piezoelectric sensors, the linear through-the-thickness electric

potential field model adopted by most FE models (Hwang and Park, 1993; Ray et al., 1994; Samanta et al.,

1996; Lam et al., 1997; Aldraihem and Wetherhold, 1997; Wang et al., 2001; Wang, 2002; Zhu et al., 2002)

and the analytical models (Lee, 1990; Hanagud et al., 1992; Yang, 1997;Lam and Ng, 1999; Auricchio et al.,

2001) may be able to obtain fairly good results for the piezoelectric actuators.
Hence, the induced stiffness of the piezoelectric actuator Kk

a can be written as
Kk
a ¼ ðKa

/uÞ
TðKa

//Þ
�1
Ka

/u: ð46Þ
Comparing Eq. (46) with Eq. (40), it can be found that the induced stiffness for these two cases are similar
since the nonlinear induced potentials are the same. The equivalent mechanical force vector fka of the ap-

plied voltage of the piezoelectric actuator can be given as
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fka ¼ �ðKa
/uÞ

TðKa
//Þ

�1
Ka

//;1V
k: ð47Þ
2.7. Global governing equations of motion

The global system governing equations of motion derived from Eq. (35) in terms of the global coor-

dinates with the standard procedure of the finite element method can be expressed as follows:
M€~uþ ðKuu þ KpÞ~u ¼ f þ fa; ð48Þ
where ~u and €~u are the global coordinates representing the global nodal mechanical displacements and
accelerations, respectively; M the global consistent mass matrix; Kuu the global mechanical stiffness matrix;

Kp the global induced stiffness matrix due to the piezoelectricity; f the global external mechanical forces;

and fa the global equivalent mechanical forces of the applied voltages of the piezoelectric actuators. Since

the unknown electric potentials of the finite sublayers of each piezoelectric layer have been condensed, it

can be expected that the present FE model would not suffer from an excessive number of potential field

variables in proportion to the number of piezoelectric layers and the number of sublayers as well as the size

of the 2D mesh.

For the static analysis problems, €~u ¼ 0, the governing equations of motion in Eq. (48) reduces to
ðKuu þ KpÞ~u ¼ f þ fa: ð49Þ
For the dynamic frequency analysis problems, since f ¼ 0 and fa ¼ 0, the governing equations of motion in

Eq. (48) reduces to
M€~uþ ðKuu þ KpÞ~u ¼ 0; ð50Þ
and the corresponding eigenvalue problem is:
jðKuu þ KpÞ � x2Mj ¼ 0; ð51Þ
where x is the fundamental frequency.
3. Numerical results and discussion

In order to demonstrate the efficiency and accuracy of the present model in estimating both the global

responses, such as the deflection and fundamental frequencies, and the local responses, such as the through-

the-thickness variation of the electric potential, two examples are used in this study.

3.1. A PVDF bimorph beam

The PVDF bimorph piezoelectric beam proposed by Tzou and Tseng (1991) consists of two identical

PVDF uniaxial beams with opposite polarities (see Fig. 3). The material properties of the PVDF extracted

from Tzou and Tseng (1991) are shown in Table 1. The deflections of the bimorph cantilever beam at the

specified nodes when a unit voltage (1 V) is applied across the thickness of the beam obtained by different

methods are shown in Table 2, in which all the errors are with respect to the theory solution (Tzou and

Tseng, 1991; Tzou, 1993). It can be seen that the results derived by the present FEM are in excellent

agreement with available theoretical results, furthermore, the deflections derived by the present FEM (5

elements) are much closer to the theoretical solutions than those from the 3D FEM results of Tzou (1993)
(10 elements) or those from the 1D FEM results of Shen (1994) (10 elements). Moreover, it can be seen that

the results of the 3D FEM (isoparametric hexahedron solid element) developed by Tzou and Tseng (1990)
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Fig. 3. A classical piezoelectric bimorph beam.

Table 1

Material properties of the PVDF

E11 (GPa) E22 (GPa) m G12 (GPa) q (kg/m3) d31 (C/N) g33 (F/m)

2.0 2.0 0.29 0.775 1800 2.2 · 10�11 1.062· 10�10

Table 2

Static deflection of the bimorph beam consisting of uniaxial PVDF materials (lm)

Node 1 2 3 4 5

Theory (Tzou, 1993) 0.0138 0.0552 0.124 0.221 0.345

3D FEM (Tzou, 1993) 0.0124 0.0508 0.116 0.210 0.330

Error (%) )10.0 )8.0 )6.2 )5.1 )4.4
1D FEM (Shen, 1994) 0.0132 0.0528 0.1188 0.2112 0.330

Error (%) )4.3 )4.3 )4.2 )4.4 )4.4
Present (nsub ¼ 1) 0.0134 0.054 0.122 0.218 0.342

Error (%) )2.9 )2.2 )1.6 )1.4 )0.9
Present (nsub ¼ 10) 0.0132 0.054 0.121 0.218 0.341

Error (%) )4.3 )2.2 )2.4 )1.4 )1.2
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are not so close to the theory solution, especially at the nodes close to the fixed end, since the 3D model is
relatively rigid (Shen, 1994) and less efficient for thin beams and plates due to the higher stiffness coefficients

in the thickness direction (Hwang and Park, 1993). It can also be seen that the 1D FEM developed by Shen

(1994) can well predict the deflections with errors within 4.4% since the piezoelectric bimorph beam itself

can be simplified as a one-dimensional structure. It should be noted that the present FEM with 10 sublayer

per PVDF layer does not assume a linear electric potential field distribution in the thickness. Since only

slight difference in the deflection response can be observed while using this more accurate FE model, it can

be concluded that the through-the-thickness distribution of the electric potential field can be assumed as

linear. The reason can be that the relative thickness of the PVDF layers of this bimorph beam is so small
(slenderness ratio is 100) that the nonlinear potentials induced by the electromechanical coupling in Eq. (45)

of each PVDF actuator can be neglected.

3.2. A PZT bimorph plate

A piezoelectric bimorph plate (see Fig. 1) undergoing a surface density of normal force and electric
potential applied to the top and bottom faces of the plate in (Fernandes and Pouget, 2003) is adopted. The
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boundary conditions of this rectangular plate of length L and width ‘ are simple support. The bimorph is

made of two identical layers of PZT-4 piezoelectric ceramics of which the material constants can be given

(Ikeda, 1996; Fernandes and Pouget, 2003) as follows:
c ¼

139 77:8 74:3 0 0 0

77:8 139 74:3 0 0 0
74:3 74:3 115 0 0 0

0 0 0 25:6 0 0

0 0 0 0 25:6 0

0 0 0 0 0 30:6

2
6666664

3
7777775GPa; ð52Þ

e ¼
0 0 0 0 12:7 0

0 0 0 12:7 0 0

�5:2 �5:2 15:1 0 0 0

2
4

3
5C=m2; ð53Þ

g ¼
13:06 0 0
0 13:06 0

0 0 11:51

2
4

3
5nF=m: ð54Þ
The geometry of the plate is L ¼ 25 mm and ‘ ¼ 12:5 mm and different slenderness ratios such as L=h ¼5,

10 and 50, in which h is the thickness of the piezoelectric bimorph plate, are considered. Two kinds of

electromechanical loads are considered, corresponding to

(1) Sensor function with a force density per unit area S0 ¼ 1000 N=m2 (linear load Ps ¼ S0‘) applied to the

upper face of the bimorph (V0 ¼ 0), where the numerical results are given in dimensionless units (Fer-

nandes and Pouget, 2003) as
ðW

ðW
;UÞ ¼ c11
hS0

ðw;/=E0Þ ð55Þ
in which c11 is the stiffness constant of elastic stiffness matrix (Eq. (52)), and the amplification factor E0

is taken as E0 ¼ 1010 m/V.

(2) Actuator function with an electric potential V0 ¼ 50 V applied to the top and bottom faces of the plate
(S0 ¼ 0), where the numerical results are given in dimensionless units (Fernandes and Pouget, 2003) as
;UÞ ¼ E0

V0
ðw;/=E0Þ: ð56Þ
Fernandes and Pouget (2003) presented a Fourier series solution to this piezoelectric bimorph problem

by adopting the plane strain assumption and used ABAQUS 2D plane strain elements to carry out the FE

computations for comparison. However, full 3D analysis was not performed. As a further comparison in
this study, in addition to the application of the present FE model (up to 200 elements), the ANSYS

coupled-field analysis program ANSYS Multi-physics is used to carry out a full 3D analysis by considering

the coupled-field brick elements (SOLID5) (up to 9600 elements are used) and the results from the full 3D

FEM are taken as accurate in the present numerical comparison.

3.2.1. Piezoelectric sensor function

For this configuration a surface density of normal force is applied to the top surface of the bimorph and

the piezoelectric layers are used as sensors in closed circuit, in which the top and bottom surfaces of the
sensors are grounded. The through-the-thickness variation of both the deflection and the voltage in

dimensionless unit at the plate center is shown in Fig. 4 for the aspect ratio L=h ¼ 10. Fig. 4(a) shows that
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Fig. 4. Force density applied on the top surface of a PZT bimorph in closed circuit for L=h ¼ 10. 3D FEM (full line), present (nsub ¼ 1)
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the linear through-the-thickness variation of the deflection W predicted by the present model with different

number of sublayers is a good approximation to the nonlinear variation predicted by the full 3D model.

Furthermore, the deflections given by the present model are with smaller values than that of the 3D model,

since the present FE model based on the plate theory (FOST) tends to overestimate the deflection stiffness

of the plate. It can be expected that further refinement of the mesh could yield improved results. Among the

deflections given by the present model, it can be seen that smaller deflection is obtained with the increase of
the number of sublayers for each PZT layer. The reason can be that more constraints on the through-the-

thickness electric potentials due to more sublayers involved would lead to a higher global stiffness. Fig. 4(b)

shows that the through-the-thickness variation of the voltage U predicted by the present model with

sublayers more than 1 can also be a good approximation to the nonlinear variation predicted by the

full 3D model. More accurate approximation can be obtained by using more sublayers. Therefore, the

present model can predict the actual through-the-thickness electric potential field well without adopting

any prescribed higher-order through-the-thickness potential assumptions. It can also be observed that there

is significant error in U when the linear electric potential model for the whole PZT layer is adopted,
which will cause the induced potential of the piezoelectric sensors in closed circuit to vanish. Actually, the

induced potential of the piezoelectric sensors in closed circuit has been ignored by a lot of researchers (Lee,

1990; Hanagud et al., 1992; Hwang and Park, 1993; Ray et al., 1994; Samanta et al., 1996; Lam et al., 1997;

Yang, 1997; Aldraihem and Wetherhold, 1997; Lam and Ng, 1999; Auricchio et al., 2001; Wang et al.,

2001; Wang, 2002; Zhu et al., 2002; Kapuria et al., 2003; Wang et al., 2004). However, according to the

present study, it is suggested that all the piezoelectric models assuming the linear through-the-thickness

electric potential distribution would be inaccurate to predict the local responses of the piezoelectric sen-

sors.
Comparisons of the numerical results from the present model with different number of sublayers

(nsub ¼ 1, 2 and 10) to those from the full 3D model and to those from the 2D plane strain model in

(Fernandes and Pouget, 2003) are presented in Table 3 for three typical slenderness ratios (L=h ¼ 5, 10 and

50), in which the 2D FEM and 2D analytical solutions (Fernandes and Pouget, 2003) are based on the

plane strain assumption. The most interesting result is that the discrepancy between the maximum values of

the deflection at the plate center for the present 2D bending model and the 2D plane strain model in

(Fernandes and Pouget, 2003) is relatively small. The maximum estimating errors for the deflection is about

4.8% for L=h ¼ 50, 5.2% for L=h ¼ 10 and up to 9.7% for L=h ¼ 5 (thick plate). However, the discrepancy
for the maximum electric potential is up to 100% for all the three slenderness ratios. Hence, it can be



Table 3

Piezoelectric bimorph in closed circuit, applied surface density force

L=h Approaches Wmax Error(%) Umax Error(%)

5 3D FEM 176.22 0.154

Present (nsub ¼ 10) 162.49 7.8 0.161 4.6

Present (nsub ¼ 2) 163.31 7.3 0.163 5.8

Present (nsub ¼ 1) 166.02 5.8 0 100

2D FEM 159.21 9.7 0.197 27.9

2D Analytical 161.47 8.4 0.206 33.8

10 3D FEM 2475.5 0.607

Present (nsub ¼ 10) 2347.8 5.2 0.648 6.8

Present (nsub ¼ 2) 2361.1 4.6 0.657 8.2

Present (nsub ¼ 1) 2405.5 2.8 0 100

2D FEM 2349.4 5.1 0.766 26.2

2D Analytical 2358.4 4.7 0.775 27.7

50 3D FEM 1.4844· 106 15.66

Present (nsub ¼ 10) 1.4128· 106 4.8 16.40 4.7

Present (nsub ¼ 2) 1.4214· 106 4.2 16.63 6.2

Present (nsub ¼ 1) 1.4498· 106 2.3 0 100

2D FEM 1.4285· 106 3.8 18.98 21.2

2D Analytical 1.4287· 106 3.8 18.99 21.3
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concluded that the local responses such as the induced electric potentials of the piezoelectric sensors in Eq.
(39) would not affect the global responses such as the deflection of the plate significantly since the top and

bottom surfaces of the sensors are grounded, as shown in Eq. (38). Therefore, it should be highlighted that

piezoelectric models of (Lee, 1990; Hanagud et al., 1992: Hwang and Park, 1993; Ray et al., 1994; Samanta

et al., 1996; Lam et al., 1997; Yang, 1997; Aldraihem and Wetherhold, 1997; Lam and Ng, 1999; Auricchio

et al., 2001; Wang et al., 2001; Wang, 2002; Zhu et al., 2002; Kapuria et al., 2003; Wang et al., 2004) based

on the linear through-the-thickness electric potential distribution assumption may be able to provide good

approximate results for the global responses, especially when the bimorph plate is thin or moderately thick,

though the induced potentials are not accurately estimated. Furthermore, it should be noted that the 2D
plane strain model in (Fernandes and Pouget, 2003) can also predict the deflection of thin or moderately

thick bimorph plates well, since the plate with an aspect ratio L=‘ of 2 and a uniformly distributed surface

density force can be approximated as unidirectional and the induced electric potentials are insignificant.
3.2.2. Piezoelectric actuator function

For this configuration the piezoelectric bimorph plate is subject to an electric potential V0 ¼ 50 V applied

to the bottom and top surfaces of the plate and the intermediate electrode is set to zero voltage (see Fig. 1).
The through-the-thickness variation of both the deflection and the voltage in dimensionless unit at the plate

center is shown in Fig. 5 for the aspect ratio L=h ¼ 10. Fig. 5(a) shows that the linear through-the-thickness

variation of the deflection W predicted by the present model with different number of sublayers is a good

approximation to the nonlinear variation predicted by the full 3D model and the deflection value becomes

smaller as the number of sublayers for each PZT layer increases, similar to the previous observation. Fig.

5(b) shows the interesting result that the through-the-thickness variation of the voltage U predicted by the

present model with different number of sublayers can all be a good approximation to the nonlinear vari-

ation predicted by the full 3D model and the through-the-thickness distribution of the electric potential
field can be well approximated as linear, as shown in dashed line in Fig. 5(b). The reason can be that the
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nonlinear induced electric potentials in Eq. (45) is insignificant compared to the applied linear electric

potentials for thin or moderately thick plates, as discussed in detail in Section 2.6.3.

Furthermore, comparisons of the numerical results from the present model with different number of

sublayers (nsub ¼ 1, 2 and 10) to those from the full 3D model and to those from the 2D plane strain
model in (Fernandes and Pouget, 2003) are made in Table 4 for three slenderness ratios (L=h ¼ 5, 10 and

50), in which Um ¼ UðL=2; ‘=2;�h=4Þ. Again, the linear through-the-thickness electric potential model

(nsub ¼ 1) demonstrates its efficiency in predicting the global response deflection W with the maximum

error of 1.7% for all the three slenderness ratios, though the error for the local response electric potential

Um is about 8.4% for L=h ¼ 50, 8.6% for L=h ¼ 10 and up to 9.1% for L=h ¼ 5 (thick plate). Furthermore,
Table 4

Electric potential applied to a piezoelectric bimorph

L=h Approaches Wmax Error(%) Um Error(%)

5 3D FEM 23.454 0.550

Present (nsub ¼ 10) 22.439 4.3 0.542 1.5

Present (nsub ¼ 2) 22.763 3.0 0.542 1.5

Present (nsub ¼ 1) 23.840 1.7 0.5 9.1

2D FEM 26.197 11.7 – –

2D Analytical 27.654 17.9 – –

10 3D FEM 97.0 0.547

Present (nsub ¼ 10) 90.7 6.5 0.539 1.5

Present (nsub ¼ 2) 92.0 5.2 0.540 1.3

Present (nsub ¼ 1) 96.3 0.7 0.5 8.6

2D FEM 115.5 19.1 – –

2D Analytical 116.0 19.6 – –

50 3D FEM 2477.8 0.546

Present (nsub ¼ 10) 2298.5 7.2 0.536 1.8

Present (nsub ¼ 2) 2330.5 5.9 0.536 1.8

Present (nsub ¼ 1) 2436.6 1.7 0.5 8.4

2D FEM 2943.9 18.8 – –

2D Analytical 2943.3 18.8 – –
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Fig. 6. Effect of the piezoelectric constants on the deflection of the bimorph plate subject to an electric voltage for L=h ¼ 10.
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it should be noted that the discrepancy for the maximum deflection Wmax given by the present FE model

for the thick plate L=h ¼ 5 is relatively small. The reason can be that the FOST plate theory may

overestimate the global stiffness of the thick plate such that the equivalent actuator forces in Eq. (47)

would also become larger. More importantly, it is shown in Table 4 that the discrepancy for the maximum
deflection Wmax given by the 2D plane strain model in (Fernandes and Pouget, 2003) for all the three

slenderness ratios is always significant. The maximum estimating errors for the deflection is about 18.8%

for L=h ¼ 50, 19.6% for L=h ¼ 10 and 17.9% for L=h ¼ 5. In those plane models (Shen, 1994; Gopinathan

et al., 2000; Wang and Quek, 2002; Kapuria, 2001; Fernandes and Pouget, 2003), the contribution of the

extension of the piezoelectric actuators due to the piezoelectric constant e32 to the global responses is

ignored while the piezoelectric material PZT is adopted as actuators. However, PZT actuator is naturally

isotropic in the plane of operation (Aldraihem and Wetherhold, 1997), i.e. e31 ¼ e32. Hence, the issue

whether the contribution of the extension due to e32 to the global responses is significant should be ad-
dressed by those plane models. Based on the present 2D bending model, Fig. 6 shows the effect of the

piezoelectric constants on the deflection of the bimorph plate subject to the electric voltage for L=h ¼ 10.

It can be seen that for the case e31 ¼ 0 and e32 6¼ 0 the plate deflect in a direction opposite to that of the

case e31 6¼ 0 and e32 ¼ 0 due to the boundary conditions on the plate contour. Those plane models can

evaluate the contribution of the extension due to e31 to the deflection, as shown in Fig. 6(a), but the

deflection due to e32 as shown in Fig. 6(b) is ignored. However, this deflection is not insignificant in this

study. Actually, the deflection response of the bimorph plate predicted by the present model, which is

approximately the superposition of the deflections in Fig. 6(a) and (b), is significantly smaller (about 20%
in the central deflection) than that predicted by the 2D plane strain model without considering the

electromechanical coupling effect of e32. Therefore, those plane models would be considered as inap-

propriate and less accurate in estimating the global responses to an electric potential applied to PZT

actuators unless the electromechanical effect of e32 is taken into account or proved to be less significant

due to the specified boundary conditions or material properties.
3.2.3. Vibration of the piezoelectric bimorph

In this section, modal frequencies of the piezoelectric bimorph plate structure for both the open circuit

and closed circuit conditions on the top and bottom surfaces of the piezoelectric layers for the typical

slenderness ratio L=h ¼ 10 are studied. The first six modes of the bimorph plate are shown in Fig. 7. It can

be seen that only the flexural modes 3 and 6 may be accurately predicted and all the other modes among

them will be missed by the plane strain model (Fernandes and Pouget, 2003). Therefore, it should be noted

that the plane strain model in (Fernandes and Pouget, 2003) can only give approximate predictions to the
modal frequencies of the bimorph plate.
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Fig. 7. Shapes of the first six modes of the bimorph plate for L=h ¼ 10.
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The modal frequencies of the bimorph plate predicted by the present model are shown in Tables 5 and 6

in comparison to the corresponding results given by the full 3D model and the 2D plane strain model

(Fernandes and Pouget, 2003). It is shown that the results from the present model with different number of

sublayers all agree well with those from the full 3D model (maximum error is 6.1%), which suggests that the

through-the-thickness electric potential distribution does not affect the global modal frequencies much for

the thin and moderately thick piezoelectric plates. This observation is also consistent with a recent
observation based on a new 3D piezoelectric model proposed by Yao and Lu (2003). It can also be seen that

the frequency of the fourth mode remains unchanged for different number of sublayers used for each PZT

layer. This can be explained by the fact that this mode is an inplane shear mode and the transversally

isotropic PZT cannot produce shear deformations to affect this mode, as discussed in detail in (Aldraihem

and Wetherhold, 1997; Wang et al., 2003). Furthermore, the value of each modal frequency for the piezo-

electric bimorph plate in closed circuit is always smaller than that in open circuit. The reason is that the

induced stiffness of the latter is higher since the induced electric potential field in the open circuit is less



Table 5

Modal frequencies (Hz) for the piezoelectric bimorph plate in closed circuit (L=h ¼ 10)

Modes 1 2 3 4 5 6

3D FEM 6055 14,605 23,276 25,220 33,990 48,941

Present (nsub ¼ 10) 6258 13,833 23,814 26,612 33,057 49,664

Error (%) 3.4 5.3 2.3 5.5 2.7 1.5

Present (nsub ¼ 2) 6242 13,827 23,754 26,612 33,020 49,554

Error (%) 3.1 5.3 2.1 5.5 2.9 1.3

Present (nsub ¼ 1) 6190 13,804 23,561 26,612 32,902 49,197

Error (%) 2.2 5.5 1.2 5.5 3.2 0.5

2D FEM – 15,747 – – – 59,370

Error (%) – 7.8 – – – 21.3

2D Analytical – 15,769 – – – 59,677

Error (%) – 8.0 – – – 21.9

Table 6

Modal frequencies (Hz) for the piezoelectric bimorph plate in open circuit (L=h¼ 10)

Modes 1 2 3 4 5 6

3D FEM 6141 14,634 23,575 25,407 34,114 49,381

Present (nsub ¼ 10) 6433 13,909 24,473 26,967 33,452 50,880

Error (%) 4.8 5.0 3.8 6.1 1.9 3.0

Present (nsub ¼ 2) 6420 13,904 24,425 26,967 33,424 50,792

Error (%) 4.5 5.0 3.6 6.1 2.0 2.9

Present (nsub ¼ 1) 6379 13,886 24,272 26,967 33,332 50,509

Error (%) 3.9 5.1 3.0 6.1 2.3 2.3

2D FEM – 16,656 – – – 62,024

Error (%) – 13.8 – – – 25.6

2D Analytical – 16,681 – – – 62,375

Error (%) – 14.0 – – – 26.3
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constrained, as discussed in Section 2.6.2. As a comparison, it can be seen that the frequencies of the
flexural modes predicted by the 2D plane strain model (Fernandes and Pouget, 2003) are significantly

higher than those predicted by the full 3D model since the flexural modes assumed by the 2D plane strain

model tends to overestimate the global flexural stiffness of the actual 2D bimorph plate.
4. Conclusions

An efficient finite element model that combines finite 2D single-layer elements with finite 3D piezoelectric

sublayer elements has been proposed for the static and dynamic analysis of a piezoelectric bimorph. The

actual through-the-thickness electric potential distribution can be accurately predicted with a linear dis-

tribution assumption for each piezoelectric sublayer. According to the present model, the nonlinear induced

electric potentials of piezoelectric sensors in closed circuit is insignificant for thin or moderately thick bi-
morph plates. The higher induced electric potentials of bimorph sensors in open circuit would lead to a

higher induced stiffness and a higher global frequency response. Furthermore, the nonlinear induced

electric potentials of piezoelectric actuators are inferior to the directly applied linear electric potentials. The

present model has been verified by good agreement in numerical solutions with a full 3D model. It is shown

that the present model with even nsub ¼ 2 can achieve good predictions in both the global and local re-

sponses and the conventional linear through-the-thickness potential assumption can only predict the global
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response well. Further evaluation on a 2D plane strain model for a transversally isotropic PZT bimorph

plate has been performed and it is shown that the model may be less accurate in predicting the static re-

sponse to an electric loading and the global frequency response and thus further improvements are rec-

ommended. The present study can be of importance for researchers to establish more accurate and efficient
piezoelectric models based on better understanding to the piezoelectricity.
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